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Abstract-A general approach to predict the behavior of the failure stress of fibre composites is
proposed. Based on a probatilistic micro-macro approach, it accounts for the statistical distribution
of defects along the fibres and on transverse specimens. After the introduction ofa statistical volume
element containing at least one critical defect, a finite element analysis is used to simulate the
progression of damage in laminate specimens. The scale effects and the influence of the involved
parameters on the failure of the material were studied for the following conditions: fiber breaks,
transverse fracture, fracturf of composite materials ([0,90), and angle ply laminates). © 1998
Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The use of organic matrix/high modulus fiber composites is increasing in space and aero­
nautic fields. Carbon fiber reinforced composites are used in many applications where safety
requirements play an important part in the design process. The composites are made of
sequences of layers of long fibers embedded in a matrix. These materials have brittle
characteristics and they show a large variability of fracture properties. Their strong het­
erogeneity and their anisotropy imply special kinds of damage processes, which require the
development of new approaches and models to predict their behavior under various loading
conditions, The main problem for the designer is the estimation of the scale effect, namely
how the size influences the :,catter of the material properties, based on experimental tests
and on their extension up to full scale. In this study, a method is proposed for estimating
the fracture stress statistics (If a composite material under the following loading conditions:
parallel to the fibers of a unidirectional layer ; transverse to the fibers; and finally applied
to laminate composites undl~r off axis solicitations. This method is based on a micro-macro
approach using appropriate statistics and finite elements at different scales, The statistical
information concerning the distribution of defects at the micro scale is obtained through
experiments. The above method is applied to the fracture of T300/914 carbon fiber
reinforced composites.

2. METHODOLOGY

In the case of materials where a diffuse damage grows before fracture, an efficient
method to predict the probability of fracture is based on numerical simulation techniques
combining finite element calculations of the stress and strain fields, and Monte-Carlo
simulations for the local fral;ture criterion. We developed a specific approach (Baxevanakis,
1993a, 1993b, 1994, 1995; Jeulin, 1995), that can be applied to various types of fracture of
composite materials, as illustrated in this paper. It is based on the following steps:
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(i) identification of the population ofdefects contained in the material by means of specific
mechanical tests and/or macro-micro calculations;

(ii) determination ofa statistical mesh and ofa statistical volume element (SVE) depending
on a local fracture criterion;

(iii) introduction of statistical information and of the fracture criterion in a finite element
calculation;

(iv) study of the fracture behavior on a first scale, namely on elementary representative
volume element (RVE);

(v) if necessary, the material may be considered as a set of RVE studied on a larger scale.

The introduction in finite element calculations of a characteristic scale in the material
by the SVE, namely the minimal volume containing at least one defect that can be broken
during the applied loading, is a crucial point in the model. Indeed, without any SVE,
unwanted mesh effects occur for the overall fracture stress in the simulations, as explained
below in Section 3. T~e SVE itself has to be determined from specific mechanical tests, as
illustrated in further sl~ctions, and depends on the type of fracture (fiber fracture, transverse
fracture).

3. FIBER FRACTURE

The first step of this study concerns the fracture from a solicitation along the fibers.
Experimental tests of a carbon epoxy T300/914 were made on specimens with a 60% fiber
volume fraction and with two different gage lengths 100 and 200 mm (Baxevanakis, 1993a,
1993b, 1994, 1995). From the fracture statistics estimated with these specimens, no sig­
nificant scale effect was apparent.

3.1. Identification of the statistics ofdefects on fibers
The statistical distribution of defects on fibers is estimated using specimens made of a

single fiber embedded in the resin, and a multi-fragmentation test (Baxevanakis, 1993a).
The cumulative density 0(0') of defects along a carbon fiber (i.e. the average number of
defects per unit length with fracture stress lower than a) as a function of the applied stress
a was modelled by a ~:igmoidal function:

(1)

where A is the maximum number of defects per unit length (8.66 mm- I
), 0'0 is a scale

parameter (6318), as is a threshold stress (equal to zero in the present case), and m a shape
parameter (estimated to 7.26 in the present case). This function can be approximated for
the weak values of the stress by a power law function 0(0') = A(a-as/ao)m, as used in the
case of the Weibull distribution which fits well results of single fiber tests. Assuming that a
fiber with length L breaks under a homogeneous tensile stress a with the weakest link
assumption, the probability distribution of the fracture stress aR of the fiber is obtained
(Jeulin, 1991):

P{aR < a} = l-exp(LO(a). (2)

Equation (2) is valid for point defects distributed according to a Poisson point process.
According to our data, the sigmoidal distribution function is valid for a fiber length L ~ 0.5
mm, corresponding to the average fragment length at the saturation limit of the single fiber
specimen.

3.2. Introduction ofa statistical volume element (SVE)
To simulate the progress of damage in a material containing defects, we must be able

to decide when and how we have to break parts of a loaded specimen. For this purpose, a



FraClUre statistics modeling of laminate composites 2507

coupling between fracture statistics and finite elements was developed. It is based on the
digitization of the continuous medium, which is represented by a mesh with a number of
finite elements (fe.). Assuming that each fe. represents a defect with an associated fracture
stress (J R, the distribution of the fracture stress depends on the size of the fe. When it
decreases, the convergence of the stress and strain field occurs, while the probability of
fracture given by eqn (2), based on the weakest link assumption applied to the fe. tends to
zero for any applied stress c'. As a result, refining the finite element mesh would result in
an increase of the fracture 1tress to infinity. Consequently we consider a statistical mesh
(statistical volume element SVE), where each element contains at least one defect (with a
length L s ~ 0.5 mm in the present case) superimposed on the finite elements mesh, as
illustrated on Fig. 1 for a representative volume element RVE containing 12 fibers; the
different gray levels represent the values of the random fracture stress (JR of the defects (and
consequently of the SVE) along the fibers, where the length of a fe. is 0.1 mm to warrant
the convergence of stress and strain fields. The SVE introduces a length scale which is a
material property and has to be determined from experiments: it will depend on the type
ofepoxy and fibers and on tl~eir adhesion. In the present case, its size, and the corresponding
fracture stress, was estimated from multifragmentation tests made on single fibers, as

Statistical Element
O.5mm

__.........Finite Element
O.lmm

Min =, 1100.00 (MPa) Max = 6692.65 (MPa)

\~
<

Fig. I. Simr lation of a distribution of the fracture stresses in the RVE.
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detailed in (Baxevanakis, 1993a). Its fracture stress is a random variable following the
distribution function (2) when the applied stress field is homogeneous; in other cases, we
can compare the fracture stress O'R of the SVE with the average applied stress if; a more
rigorous fracture criterion of the SVE is derived from the weakest link assumption and the
Poisson point process:

P{fracture of the SVE} = I-exp (LvE 8(0'(x» dX) = l-exp(V8(O'eg» (3)

where V is the volume (here the length L s) of the SVE, and O'eg an equivalent stress giving
the same formula as for the homogeneous stress field over the SVE. By application of eqn
(3), it is easy to proviCe Monte-Carlo simulations of the random fracture stress of the SVE,
even when it is located in large stress gradients: the SVE will be broken when the applied
O'eg is larger than the random fracture stress obtained by simulation of a random variable
following the distribution given by eqn (2).

3.3. Fracture statistic.,jrom two-dimensional simulations oj composites
In calculations, a plane stress state is assumed; the element type used was four-node

with a linear shape function and four-Gauss integration points [with the ZEBULON fe.
code (Burlet, 1986)]. When the average stress calculated at the Gauss point of a fe.
overcomes the associated fracture stress O'R, the fe. is broken (its stiffness is replaced by the
matrix stiffness, the Young's modulus of the matrix being a 100 times lower than the
modulus of the fiber); a damaged length L d , where the drop of the stiffness occurs, is
introduced (Ld = 0.1 mm in the present case); it is interpreted as a parameter of the
interfacial bound between fiber and matrix. Uniform strains are applied on the boundary
of the RVE. Thirty realizations of the RVE with periodically distributed fibers (between 3
and 12) and a length varying between I and 15 mm were simulated. The mechanical
behavior of a simulaton obtained by homogenization is illustrated in Fig. 2. It is in good
agreement with the experiments.

The same procedure, based on 30 simulations per case, is adopted to describe the
fracture behavior of the material on the next scale (meso scale). In this case a SVE represents
a previous RVE (having eight fibers, 12 mm length, Vr = 60%) with the obtained fracture
statistics, and the fe. which belong to a same SVE have the same fracture stress O'Re' The
influence of the volume fraction variability on the fracture behavior of the composite was
studied from further ~:imulations reproducing the statistical distribution of Vr obtained by
image analysis, as reported in details elsewhere (Baxevanakis, 1994; Baxevanakis, 1995).

We report now the results of the simulations concerning the fracture statistics deduced
from simulations.

From RVE simulations, the scale effect on the average strength and on the critical
density of defects at fracture is illustrated in Fig. 3: for a RVE containing more than six
fibers and with length longer than 8 mm, the cumulative fracture distribution obtained by
simulations is seen to tend towards on asymptotic distribution [as shown from a statistical
model in Smith (1981)]. The same observation is made concerning the critical density of
defects. From the record of the coordinates of fiber breaks during the simulations, a uniform
distribution of damage over the RVE was observed at the same critical size. The evolution
of the sampled defect, during the progress of damage can be summarized as follows: first
a diffuse damage samples the weakest defects on fibers. Other defects of the whole popu­
lation are broken, due to the stress concentration in the vicinity of the already broken
elements. After the failure of a number of fibers (seven or eight in the present case), a crack
orthogonal to the load axis is formed, the stress concentration factor being too large for
any fiber to stop the propagation, as already shown by analytical models with simplified
assumptions (Hedgepeth, 1961; Batdorf, 1982; Bader, 1982). At this intermediate scale, a
scale effect is observed for RVE of small length only, while later an asymptotic distribution
is obtained, resulting from the effect of a critical density of the defects causing the fracture [a
statistical proof of thi:; type of fracture behavior is given in Jeulin (1991 )]. This distribution,
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deduced from simulations, compares well with the experimental distribution (Fig. 4) ; tests
were made on specimens with a 10 xl mm2 cross-section and with two different gauge
lengths (100 and 200 mm), cut from 300 x 300 mm2 plates. Tests were performed with an
Instran testing machine, using a 0.1 mm min --1 crosshead speed and acoustic emission to
detect the damage threshold in the specimen.

Additional calculations were made at a meso scale, the composite being now an
assembly of SVE made of previous RVE. No important size effect is observed and over a
certain size the fracture behavior of the material becomes completely detenninistic; the
estimated fracture stress is lower than on the previous scale and than in experiments, the
fracture being caused by the failure of the most critical defects. For a random Vr, the
average fracture stress is again lower and its dispersion is higher, because the fracture is
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Fig. 3. (a) Average fracture stress as a function of the size of the element (30 simulations were
carried out for each size); (b) average value of the critical density of broken defects, calculated at

the fracture ofth(: RVE, as a function of the size of the element (30 simulations for each size).

induced by the RVE oflow fiber volume fractions. The discrepancy with experiments results
from the use, in the model, of the RVE stiffness dropping to zero after the break, causing
the fracture of the whole composite. In fact a progressive fracture behavior based on
continuum damage mechanics could be adopted.

4. TRANSVERSE FRACTURE OF A LAYER

The experimental study and the model are now developed on a meso-scale, where data
are available at a me~oscale; fracture tests were made on composites with two thicknesses
of the 90° solicited layer (0.25 and 0.5 mm).

4.1. Identification of i'he population ofdefects
According to experimental observations, the transverse cracking in 900 plies is the

most important damage process (Reifsnider, 1982; Wang, 1984). It appears early during
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the loading, and it grows until a saturation state characterized by an inter crack distance
(l crack: mm). Then the distance between two cracks is too small to allow the loading of
the matrix and the apparition of new cracks.

Multicracking tests of a cross-ply ([Onl,90n,]S(n 1,n2 = 1,2)) composite (generalizing
the multi-fragmentation test of a single fiber) provide information on the density of cracks
in the ply at 900 as a funcLon of the macroscopic stress. A unidirectional tensile test at
room temperature is chosen to study the damage inside the middle plies. Observation of
the growth of the damage is possible using a optical microscope on a polished area of the
specimen, and counting the number of cracks.

The resulting density ofcracks can be converted into an estimation of the defect density
8«J) by a macro-micro calculation. Using finite element calculation and a homogenization
procedure, the local stress (J at crack initiation is estimated, and therefore the crack density
is converted into an experimental cumulative density of defects 8«J).

4.1.1. Method of calculation of the local fracture stress. The chosen fracture criterion
is local and, therefore, it is necessary in a first step to calculate the stress field within a
cracked ply. A cell representing the damaged material is chosen (Fig. 5) and meshed with
hexaedral elements with a quadratic interpolation. Cracks are in the end of the cell and the
entire specimen can be obtained by periodicity.

In order to identify the population of defects from experimental measurements in a
layered composite, we used the following method: to any value of the crack density D j is
attributed a corresponding macroscopic stress L from the (D,L) experimental curve, and

.=-.~g~~~~~~~~
dil2 dil2

Fig. 5. Cracked cell for the calculation of the local fracture stress in transverse fracture.
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a value of the strain E; from the ("L-E) curve; the value of the parameter d; defined in Fig.
5, to use for the unit cell is calculated and applied to the cell; finally, one solves the final
f.e. problem corresponding to Fig. 5.

Before introducing the different fracture criteria, we will describe the homogenization
technique used in the numerical calculation. A macro-micro approach enables us to model
the behavior of the damaged and undamaged material. The structure is supposed to be
periodic by zone. An equivalent homogeneous material without any cracks is substituted
for the cracked material. Cracks are taken into account through the "effective stress"
concept and the derived equivalent moduli, obtained by homogenization, as described in
the Appendix.

4.1.2. The local fracture criterion. As shown on Fig. 7, a crack propagates under mode
I, induced by a stress CTII (x) normal to the crack direction. The corresponding inter crack
distance is given by

(4)

In this model, the material is a continuous chain of statistical volume elements (SVE)

-Lc

I~

~~~~~~~~O~o~=~'-t

.- 00.- ...

x

Fig. 7. Def.nition of the SVE (statistical volume element) for transverse fracture.
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with a length equal to Lsat ' Consequently, it corresponds to the minimal volume for a crack
to appear in 90" plies,

As said before, the main idea of our approach to simulate the fracture behavior, is to
apply a weakest link hypothesis to each SVE. In the present case, when the local rupture
criterion is reached in a SVE, the material is weakened, Its initial rigidity is replaced by a
damaged one, Let us remind that with the weakest link hypothesis, the fracture probability
of a SVE is given by the eqn (2) where (J(O') is the cumulative broken defect density according
to the stress 0' = 0'11 (x) considered constant in the SVE.

From the previous remark, we can propose an estimator of the defect density: con­
sidering a length L rof material with cracked cells, one could use the estimation (J(O') = 1/L r.
However, since a constant suess is required in the SVE, (J(O') is estimated by:

I
(J(O') = (Lr-2LJe (5)

where Lr = 1/D;, D; being a given crack density and e the thickness of the cracked plies.
From Fig. 8, it appears that the estimated (J(O') depends on the thickness, and therefore

cannot be considered an intrinsic property of the material since it combines crack initiation
and propagation. However, we use in simulations the curve obtained for the corresponding
thickness; the population of defects of the smaller thickness is modelled by a sigmoidal
function [eqn (l)] with A = 17.04mm~2, 0'0 = 86.7 and m = 11.04; for the larger thickness,
the density (J(O') is modeled by a power law function (as in the Weibull distribution) with
0'0 = 38.6 and m = 11.91. In a similar study, the considered defects are microcracks with a
Weibull size distribution, which are introduced in simulations based on linear fracture
mechanics concepts (Wang, 1984).

4.2. Definition ofa statistical volume element
The same approach as for the fiber break is used for simulating the transverse mul­

ticracking : now a SVE90 containing a single critical defect for crack initiation is defined
from the average crack spacing at saturation (Fig. 7). The length of the SVE90 is 0.835 and
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Fig. 9. Comparison between the experimental and the numerical prediction of the evolution of the
crack density as a function of the applied stress.

0.96 mm for the 0.25 and 0.5 mm thickness, and its width is the thickness of the layer. To
every SVE90 is attributed a random fracture initiation stress obeying eqn (2) where L is
replaced by the volume VSVE of the SVE. An f.e. mesh is superimposed on specimens with
length 100 mm.

4.3. Multicracking simulation
For the calculations, the 0° layer is assumed to be orthotropic linear elastic, while the

90 0 layer fe. is damaged when reaching its fracture initiation stress (the damaged elastic
stiffness is replaced by the equivalent stiffness of the cracked material). A mesh with 2880
rectangular fe. (using the same element as in Section 3.3) for the 0.5 mm and with 3800
fe. for the 1 mm thickness was used in simulations (30 realizations per thickness). The
kinetics of the damage process is very well reproduced (Fig. 9) for the 0.5 mm thickness.
The agreement is limited to the lower crack initiation stresses for the other thickness because
the crack propagation and the interaction between cracks are neglected in the model.

5. TRANSVERSE FRACTURE OF A LAMINATE COMPOSITE

5.1. Geometry of the simulations
The two previous approaches are combined for the simulation of the fracture of

laminate composites [On" 90nz]' with two thicknesses (0.5 and I mm), under a tensile stress
parallel to the fibers of the 0° layer. The multicracking process is initiated in the 90° layer.
For the simulation of 30 samples per case, the same SVE90 as for the transverse cracking
(with the corresponding fracture statistics) is used in the 90 0 layer. A mesh made of 50 SVE
is used for these simulations. For the 0" layer, two extreme situations were investigated
(Fig. 10): (i) to a SVEo having the same length as the SVE90 and with the thickness of
the layer, is affected a random fracture stress generated according to the asymptotic 0°
distribution: (ii) a uniform random fracture stress is attributed to every 0° layer, assuming
the absence of scale effect. In both cases is studied the statistical distribution of the fracture
stress of the composit~ and of the crack density at saturation in the 90° layer. To simulate
the loading until fracture (1.3% strain), 40 steps of calculation are implemented in the
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Fig. 10. (a) Coupling between failure statistics and finite element: to each SVEOo of the ply of 00 is
associated a random stress following the asymptotic 0' distribution; (b) Coupling between fracture
statistics and finite element: assuming no scale effect in the fracture of the 0° layer, a uniform

random fracture stress is attributed to every 0' ply.

o
90

o

nonlinear part of the ZEBULON f.e. code, using a tridimensional mesh. The previous
calculations were done using a pseudo three-dimensional approach and bidimensional finite
elements. In this case a full Ixidimensional approach is adopted in order to obtain more
precise results. Tridimensional finite elements with eight nodes and quadratic interpolation
were used; three meshes were investigated, a coarse one, with 160 finite elements, and two
refined meshes with 1000 anc. 2550 finite elements.

5.2. Transverse fracture statistics ofa laminate
The results of the simulations obtained for the case of a [02,902]5 composite show that

the first assumption (i) given III Section 5.1 produces a deterministic behavior of the fracture
stress, while the second case (ii) reproduces correctly the mean value (892 MPa), the
standard deviation (34.4 MPa) of the fracture stress observed on experiments (869 and 30.6
MPa). A series of 30 tensile tests were performed on [02,902]5 specimens, the study of the
fracture stress being detailed is described in [Lebon, 1995]. This is illustrated by Fig. 11

~ 1 • •::l •.... 0,9 • Constant fracture stress • •g •
<t:: • •0,8 • •..... ••0 0,7 A Local fracture stress ••
~ I.:= 0,6 ••

,J:) J~ 0,5,J:) Experiencee • ••0,4 • •c.. •• •~ 0,3 • •> •'p • ••~ 0,2 : •:; ••§ 0,1 • •• ~ •
U 0 •

600 700 800 900 1000

Experimental fracture stress (MPa)
Fig. II. Comparison between the predicted and the experimental transverse fracture stress distri­

butions.
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Fig. 12. Prediction of the damage kinetics for the transverse fracture of a laminate composite.

showing a comparison between the experimental and simulated distributions of the fracture
stress. This result is in agreement with the absence of scale effect observed in the fiber
fracture study, and should be useful for further simulations ofcomposites at different scales.

5.3. Prediction of the damage kinetics
As in Section 4.3, we can study the evolution of the crack density when increasing the

applied stress during the simulation. This is shown in Fig. 12 obtained for a [02,902],

composite. It appears that the simulated kinetics is slightly more pessimistic than the actual
one, since the growth of the crack density is a bit faster. In this simulation, there is no
incidence of the number of SVE (10 and 50 SVE) on the kinetics; this means that no
apparent size effect is seen for this type of solicitation.

6. OFF AXIS FRACTURE OF LAMINATE COMPOSITES

In this section, 1 generalization of the previous models to the off axis fracture is
proposed. An additional fracture criterion leads to simulations of the complete fracture
behavior of angle ply laminate under tensile loading. In the absence of reliable experimental
data for this kind of >alicitation, we used for comparison results of simulations, obtained
with a software based on a micro-macro continuous approach, developed in (Renard,
1993a), Starting from experimental curves of the stress-strain obtained for each laminate,
this program provide~; the evolution of crack densities. The following sequences of stacking
of composites are studied: [02, !X2], with !X = 45, 60 and 80 0

•

6.1. Calculation of th'! mean stress field of the middle ply
Using the same f,~atures as for the flat laminate [02,902]" one calculates the mean stress

field of the middle plies of the angle ply laminate. According to the numerical results, the
stress field is comple~ and very heterogeneous, therefore, in order to impose a constant
stress in a SVE, a corrected density is used, accounting for the volume under the higher
solicitation. In order to correct the density, the area in the middle ply where the average
stress is constant is considered (its length is equal to L) and the length L c (defined in Fig.
7) is replaced by L. So doing, we took into account the corrected density due to stress
variation in the calculated cell. A more rigorous approach would use the formulation given
by eqn (3).
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Fig. 13. Crack density as a [unction of the average stresses (a, r) calculated in the middle plies of

the laminate (MPa).

All the curves shown on Fig. 13, present different average stress fields, as a function
of the crack density: except for the flat laminate, a couple of stresses an and (Jxy is applied
(from here now, one will me the notation (J and T). The closer the angle rt. is to 45c

, the
higher is T, as compared to (t.

6.2. Fracture criterion for offaxis tests and identification of the population ofdefects
Angle ply laminates are submitted to a complex stress field in the middle plies and an

important coupling relatior. exists between (J and T. The following two assumptions are
used in this work (rt. being the orientation of the stacking sequence and D the crack density) .

• The local fracture criterion, combining the normal stress (J and the shear stress T, is
quadratic, as the macroscopic Tsai-Hill (Tsai, 1984) criterion used in composite materials
(Petitpas, 1993):

(6)

It is assumed that the fracture of a SVE will take place when fed, rt.) :;:, Ic(D, rt.), Ic being
the critical (and random) value of the given SVE. The quadratic criterion depends on a
coefficient b, enhancing the weakness of defects to shear.
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• Whatever the defects that occur, their onsets are described by the law corresponding to
the flat laminate [02,902]5' For this type of material, this leads to the expression:

j2(D,90) = a;q (D, 90) (7)

where a;q(D,90) is the stress in the middle plies for the defect density D. With this
assumption, we can use for identification the population of defects studied in section 4.3.
The last parameter of the model is the coefficient b. All sequences of stacking are computed
using values of b = 0.5, 1.0 and 104.

According to the second assumption, the loading induces only mode I fracture in the
material. This is realistic because the shear stress T results from shear efforts in a plane
orthogonal to the crack lips. Therefore, one can consider that it cannot induce a mode II
or III fracture; in addition, this assumption allows us to consider a part of the criterion as
intrinsic to angle ply laminate and, consequently, to be able to make the corresponding
identification from flat laminates.

6.3. Prediction of the damage kinetics
The method introduced previously for coupling the f.e. method with the fracture

statistics is implemented in this section. Tridimensional meshes (up to 2500 f.e. with eight
nodes and a quadratic interpolation) are used to study several aspects:

(i) assessing the validity of the quadratic criterion of fracture (is the coefficient b
constant?) ;

(ii) study of the convergence of the f.e. problem;
(iii) study of the influence of the number of SVE on the results.

The first point is treated with the following choices of the coefficient, as mentioned
earlier: b = 0.5, 1.0 and 104. From the results obtained for angle ply laminates (ex = 80,60
and 45°, using 10 SVE), the calculated behavior is independent on b (Lebon, 1995). We
decide, therefore, to choose from now on b = 1.0. For the second aspect, the same problem
was solved with increasingly refined meshes and no significant change was observed in
results.

The third aspects is very important because the adopted modeling induces an "all or
nothing" behavior. That means that when the fracture stress is reached in one of the finite
elements of a SVE, one immediately softens it by substituting a damaged one to its initial
rigidity. In addition, increasing the number of SVE is equivalent to increasing the size of
the specimen; from tbis, size effects on fracture can be studied.

To study the influence of the number of SVE, one calculates the behavior for different
angle ply laminates (IX = 80, 60 and 45") and for different number of SVE (10 and 50).
Some results are given for ex = 45 c in Fig. 14, to compare with a damaged one (Fig. 12

-0-10 SVE 450
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Fig. 14. Prediction cfthe damage kinetics for the off axis fracture ofa laminate composite (IX = 45C
).
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obtained for ~ = 90°). One notices that the more the laminate is off axis, the more the
calculated results are different from the continuous damage approach. When ~ = 80 and
90°, the results are very similar, whatever the number ofSVE, and are close to the continuous
approach. When ~ = 45 and 600, different results are obtained when changing the number
of SVE: from this size effee:, it appears that increasing the number of SVE gives results
closer to the continuous model. Consequently, it is important for the off axis tests to define
a minimum number of SVE to insure a good accuracy in the simulations.

7. CONCLUSION

The methodology developed for modeling the statistical aspects offracture of laminate
composites is successful for simple solicitations. Concerning the off axis fracture, the
damage kinetics obtained from simulations is pessimistic, as compared to the results of a
continuous numerical simulation. For large off axis laminates, it is necessary to perform
experimental tests to evaluate the validity of our numerical simulations.

The main contribution of our approach is the use of models for the critical defects
based on a large amount of data obtained by multi-fragmentation and multicracking tests,
and introduced into finite eLement calculation by means of a statistical volume element.
This approach is quite general, and can be applied to the simulation of the fracture of any
material, where the length scale of the defects L s and of a single unit of fracture L d are
provided (as the 0.5 and 0.1 mm scales in the present case for fibers). To improve the model,
one can propose the following modifications:

• to introduce a continuous statistical damage model, in order to reduce the "all or nothing"
effects of the behavior;

• to use more complex behavior laws for the plies. As one can see on experimental curves,
laminates have nonlinear behavior (probably viscoelastic), that can be introduced in the
modeling;

• to improve the implementation of the local "weakest link" hypothesis, by accounting for
the heterogeneity of the stress field inside each SVE.
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APPENDIX

Elements ofhomogenization
The homogenization nethod (Sanchez Palencia, 1987; Lebon, 1993) is obtained by averaging: let n be a

domain of R3 occupied by a heterogeneous body. n is related to the axis (x,), and contains no defect (pores or
cracks). The different inclusions are firmly bonded at the interface. Homogenization attempts to substitute a
heterogeneous medium by an equivalent homogeneous one in which heterogeneities have been "rubbed out".

The main step of the method is the choice of a representative cell V(Y) (with the boundary aV) related to the
axis (y,). Two scales are pn:sent: a macroscopic one related to (Xi), in which heterogeneities are very small, and a
microscopic one related to (y,) (Fig. 6). A usual method for linking the two scales is to assume that macroscopic
properties are the average of their corresponding microscopic properties.

Therefore, if 0:, E) ard (IT, 0) are, respectively, macroscopic and microscopic stress and strain tensors, we
have the relations :

:E'j = me:(v) Iv lTi;(Y) dy = (lTi)v

Ei) = ~(V)f O'j(Y) dy = (oij)v.
mes v

(AI)

These relations have tJ be modified if the material contains defects such as cracks or pores. The problem P
to solve is to find (IT, u), as the solution of:

lTij,i= 0 in V

(Ou(u)V = Eil in V+ boundary conditions on av.

We know that:

assuming that D, the strain localization tensor, is defined as oij = D'jkhE", then

(A2)

(A3)

(A4)

where qhOm is the stiffness tensor of the equivalent homogeneous material associated with n. The accuracy of this
method depends on the choice of D.

In the present case, an improvement of the Hill-Mandel approach was investigated: firstly the representative
cell is chosen as the unit cell Y of a Y-periodic medium; then the periodicity of displacement is introduced. The
problem P is now to find (IT, u) by solving:

lT ilJ = 0 in V

G ij = aijkhf.kh in V

Ui = Eijy)+vi onaV

with Vi Y periodic if Eijy! = 0 and v, = 0 ifEijY; # O. (A5)

With these conditions, it can be proved that (oij(u»v = Eij. The problem being linear in u, we can assume
that
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u, = Ek"W1'-
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(A6)

The problem P is then split into six elementary problems (Ph) : find (.flo, w"") solution of P for k, h = I, 2, 3
and

E1t = ~(<lik<lj" +<lih<ljk)'

Finally, we obtain the homogenized behavior from:

This method is implemented to obtain the macroscopic behavior of laminates,

(A7)

(A8)


